Search

Liquid flow and control without solid walls - Nature.com

thekflow.blogspot.com
  • 1.

    Tabeling, P. Introduction to Microfluidics (Oxford, 2005).

  • 2.

    Mukhopadhyay, R. When microfluidic devices go bad. Anal. Chem. 77, 429A–432A (2005).

  • 3.

    Zhao, B., Moore, J. S. & Beebe, D. J. Surface-directed liquid flow inside microchannels. Science 291, 1023–1026 (2001).

  • 4.

    Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

  • 5.

    Wang, W. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 559, 77–82 (2018).

  • 6.

    Leslie, D. C. et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 32, 1134–1140 (2014).

  • 7.

    Forth, J. et al. Reconfigurable printed liquids. Adv. Mater. 30, 1707603 (2018).

  • 8.

    Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

  • 9.

    Banerjee, A., Kreit, E., Liu, Y., Heikenfeld, J. & Papautsky, I. Reconfigurable virtual electrowetting channels. Lab Chip 12, 758 (2012).

  • 10.

    Choi, K., Ng, A. H. C., Fobel, R. & Wheeler, A. R. Digital microfluidics. Annu. Rev. Anal. Chem. 5, 413–440 (2012).

  • 11.

    Lee, W. C., Heo, Y. J. & Takeuchi, S. Wall-less liquid pathways formed with three-dimensional microring arrays. Appl. Phys. Lett. 101, 114108 (2012).

  • 12.

    Walsh, E. J. et al. Microfluidics with fluid walls. Nat. Commun. 8, 816 (2017).

  • 13.

    Keerthi, A. et al. Ballistic molecular transport through two-dimensional channels. Nature 558, 420–424 (2018).

  • 14.

    Shang, L., Cheng, Y. & Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017).

  • 15.

    Zhao, W., Cheng, R., Miller, J. R. & Mao, L. Label-free microfluidic manipulation of particles and cells in magnetic liquids. Adv. Funct. Mater. 26, 3916–3932 (2016).

  • 16.

    Coey, J. M. D., Aogaki, R., Byrne, F. & Stamenov, P. Magnetic stabilization and vorticity in submillimeter paramagnetic liquid tubes. Proc. Natl Acad. Sci. USA 106, 8811–8817 (2009).

  • 17.

    Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. Gadolinium(iii) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).

  • 18.

    Ferrand, J., Favreau, L., Joubaud, S. & Freyssingeas, E. Wetting effect on Torricelli’s law. Phys. Rev. Lett. 117, 248002 (2016).

  • 19.

    Rosensweig, R. E. Ferrohydrodynamics (Dover, 2014).

  • 20.

    Posocco, P. et al. Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Adv. 6, 4723–4729 (2016).

  • 21.

    Owusu Apenten, R. K. & Zhu, Q.-H. Interfacial parameters for selected Spans and Tweens at the hydrocarbon–water interface. Food Hydrocoll. 10, 27–30 (1996).

  • 22.

    Byrnes, J. et al. Hemolysis during cardiac extracorporeal membrane oxygenation: a case-control comparison of roller pumps and centrifugal pumps in a pediatric population. ASAIO J. 57, 456–461 (2011).

  • 23.

    Omar, H. R. et al. Plasma free hemoglobin is an independent predictor of mortality among patients on extracorporeal membrane oxygenation support. PLoS ONE 10, e0124034 (2015).

  • 24.

    Dalton, H. J. et al. Factors associated with bleeding and thrombosis in children receiving extracorporeal membrane oxygenation. Am. J. Respir. Crit. Care Med. 196, 762–771 (2017).

  • 25.

    Valladolid, C., Yee, A. & Cruz, M. A. von Willebrand factor, free hemoglobin and thrombosis in ECMO. Front. Med. 5, 228 (2018).

  • 26.

    Wilson, A. M. M. M. et al. Hemolysis risk after packed red blood cells transfusion with infusion pumps. Rev. Lat. Am. Enfermagem 26, e3053 (2018).

  • 27.

    Prahl, S. Optical absorption of hemoglobin. Oregon Medical Laser Center https://omlc.org/spectra/hemoglobin/index.html (1999).

  • 28.

    Baskin, L., Dias, V., Chin, A., Abdullah, A. & Naugler, C. in Accurate Results in the Clinical Laboratory (eds Dasgupta, A. & Sepulveda, J. L.) 19–34 (Elsevier, 2013).

  • 29.

    Jaouen, P., Vandanjon, L. & Quéméneur, F. The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: the role of pumps. Bioresour. Technol. 68, 149–154 (1999).

  • 30.

    Kamaraju, H., Wetzel, K. & Kelly, W. J. Modeling shear-induced CHO cell damage in a rotary positive displacement pump. Biotechnol. Prog. 26, 1606–1615 (2010).

  • 31.

    Vázquez-Rey, M. & Lang, D. A. Aggregates in monoclonal antibody manufacturing processes. Biotechnol. Bioeng. 108, 1494–1508 (2011).

  • 32.

    Wang, S. et al. Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems. J. Biotechnol. 246, 52–60 (2017).

  • 33.

    Nesta, D. et al. Aggregation from shear stress and surface interaction: molecule-specific or universal phenomenon? Bioprocess Int. 30, 30–39 (2017).

  • 34.

    Hejazian, M., Li, W. & Nguyen, N.-T. Lab on a chip for continuous-flow magnetic cell separation. Lab Chip 15, 959–970 (2015).

  • 35.

    Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluidics 1, 249–267 (2005).

  • 36.

    Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

  • 37.

    Bocquet, L. & Tabeling, P. Physics and technological aspects of nanofluidics. Lab Chip 14, 3143–3158 (2014).

  • 38.

    Evans, D. F. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003–2005 (1959).

  • 39.

    Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).

  • 40.

    Sastri, V. R., Perumareddi, J. R., Rao, V. R., Rayudu, G. V. S. & Bünzli, J.-C. G. Modern Aspects of Rare Earths and their Complexes (Elsevier, 2003).

  • 41.

    Cugat, O., Byrne, R., McCaulay, J. & Coey, J. M. D. A compact vibrating-sample magnetometer with variable permanent magnet flux source. Rev. Sci. Instrum. 65, 3570–3573 (1994).

  • 42.

    Wysin, G. M. Demagnetization Fields (Kansas State Univ., 2012); https://www.phys.k-state.edu/personal/wysin/notes/demag.pdf.

  • 43.

    Furlani, E. P. Permanent Magnet and Electromechanical Devices (Academic, 2001).

  • 44.

    Yang, Z. J., Johansen, T. H., Bratsberg, H., Helgesen, G. & Skjeltorp, A. T. Potential and force between a magnet and a bulk Y1Ba2Cu3O7−δ superconductor studied by a mechanical pendulum. Supercond. Sci. Technol. 3, 591 (1990).

  • 45.

    Camacho, J. M. & Sosa, V. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Rev. Mex. Fis. E 59, 8–17 (2013).

  • 46.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

  • 47.

    Daerr, A. & Mogne, A. Pendent_Drop: An ImageJ plugin to measure the surface tension from an image of a pendent drop. J. Open Res. Softw. 4, e3 (2016).

  • 48.

    Marone, F. & Stampanoni, M. Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 19, 1029–1037 (2012).

  • Let's block ads! (Why?)



    "flow" - Google News
    May 06, 2020 at 10:08PM
    https://ift.tt/3c5KaxE

    Liquid flow and control without solid walls - Nature.com
    "flow" - Google News
    https://ift.tt/2Sw6Z5O
    https://ift.tt/2zNW3tO

    Bagikan Berita Ini

    0 Response to "Liquid flow and control without solid walls - Nature.com"

    Post a Comment


    Powered by Blogger.